Questions on Motion - Mark Scheme

1. Correct lines from:

- joule (J) to N m
- watt (W) to $J s^{-1}$
- newton (N) to kg m s $^{-2}$

Note: 2 marks for all correct 1 mark for two correct 0 marks for none or one correct

[2]

B2

2. (a) (i)
$$v^2 = u^2 + 2as$$
 C1
 $0 = (80)^2 + 2 \times a \times 120$ C1
 $a = (-) 26.7 \text{ (m s}^{-2}) \text{ ignore sign}$ A1

(ii)
$$t = (0 - 80) / - 26.7$$
 C1
 $t = 3.0$ (s) A1

(b) (time lost by) car
$$A = (3 + 9 + 4) = 16$$
 B1 car B was 17 behind C1 Car B takes 2 s to travel the 160 m / Car B 19 behind B1 Hence car A 3 s ahead $(19 - 16)$ A1

[9]

has magnitude and direction allow one out of two for a vector has direction and a scalar does not

[4]

(a) (i) $v^2 = 0 + 2 \times 9.8(1) \times 30$ 4. C1 $v = 24. (3) (m s^{-1})$ **A**1 (-1 if g = 10 is used, once only on the paper)(zero scored if s = 36 m is used) $s = ut + \frac{1}{2} at^2$ or v = u + ator s = (u + v)t / 2 $30 = 0 + \frac{1}{2} \times 9.8(1) \times t^2$ t = 24.3 / 9.8 $t = 2 \times 30/24.3$ C1 t = 2.5 (s)**A**1 In the air: weight / force due to gravity (b) (allow air resistance if included as well) B1 (Hence) constant acceleration / acceleration at 9.8 m $\rm s^{-2}$ (allow reduced acceleration / terminal velocity if air resistance included) **B**1 In water: weight and (large) fluid resistance / upthrust / buoyancy B1 Hence deceleration / slows down B1 [8] 5. (i) velocity B1 travels in two opposite directions or equivalent words / increasing and decreasing displacement B1 \mathbf{Z} any peak or trough / A / B / 0 / 3.0 / 6.0s B1 (ii) **M** any point where gradient is a maximum (1.0 - 1.6 or 4.4 - 5.0 s)B1 If M and Z are given on the diagram then max 1 В1 (iii) tangent to curve drawn values given correct from graph C1 answers correct for maximum in range of 1.3 to 1.5 **A**1 [7] **6.** N is normal to the ramp (judged by eye) (i)

Allow marks even if the labels N and F are omitted

B1

F is parallel <u>and</u> up the ramp

B1

B1

(ii) $F = W \sin\theta$

[3]

7.

scalar	vector
density	acceleration
energy	displacement
power	weight
speed	
time	

All correct scores 4

6, 7 correct scores 3

4, 5 correct scores 2

2, 3 correct scores 1

[4]

8.(a) (i) 1.
$$mass = 360 / 9.8 \ 36.7 \ (kg)$$
 (allow 2sf)

$$= 36.7 / 4.7 \times 10^{-3}$$

$$= 7.8 \times 10^{-3}$$
 A1

unit kg m
$$^{-3}$$
 B1

(ii) right angled triangle with an additional correct angle marked M1 set of correct force labels and correct arrows A1

algebra shown or scale given C1

tension = 270 (N) or value in the range 255 to 285 (N)

A1

(b) (i) tension is a vector / has magnitude and direction B1

direction involved in addition / the tensions or ropes act in different directions B1

(ii) sum = 270 sin 37 + 360 sin 53 B1

$$=162.5 + 287.5$$
 B1

(or one mark each for values of 162.5 and 287.5 seen) = 450 (N)

[12]

9.	(a)	(i)	1 Horizontal component = $24\cos 30$ = 21 (20.8) (N)	C1 A1	
				AI	
			2. vertical component = $24\sin 30$		
			= 12 (12.0) (N)	A1	
		(ii)	vertical force = $65 + 12$	M1	
			= 77	A0	
		(iii)	horizontal force = 20.8 (note ecf for 20.8 component)		
		` ′	resultant = $[(77)^2 + (20.8)^2]^{1/2}$	C1	
			= 80 (79.8) (N)	A1	
			(or by vector triangle need correct labels and arrows for C1 mark)		
		(iv)	80 (79.8)(N) / equal to (iii) allow ecf	B1	
			the resultant force needs to be zero or forces need		
			to balance above value to give no acceleration or constant velocity	B1	
	(b)	(i)	P = F / A	C1	
			$= 77 / 4.2 \times 10^{-3}$		
			= 18000 (18333) (Pa)	A1	
		(ii)	more / increases		
			downward / vertical component (of P) will be greater	B1	
			(for larger angles)		F447
					[11]

PhysicsAndMathsTutor.com